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General Class of Multiparticulate Dissolution Models 

PETER VENG PEDERSENx and K. F. BROWN 

Abstract The dissolution of multiparticulate systems under sink and 
nonsink conditions can be described rigorously according to a generally 
applicable formula on the basis of the single-particle dissolution model 
and the initial particle distribution. The kinetic model for log-normal 
systems dissolving under sink conditions is extended to nonsink condi- 
tions as a specific example. The equation presented describes a general 
class of multiparticulate models for various values of the dispersion pa- 
rameter and the dissolution capacity coefficient. 

Keyphrases Dissolution model-multiparticulate systems under sink 
and nonsink conditions, generally applicable equations derived 0 Models, 
dissolution-multiparticulate systems under sink and nonsink condi- 
tions, generally applicable equations derived Multiparticulate sys- 
tems-dissolution model under sink and nonsink conditions, generally 
applicable equations derived 

Characterization of dissolution behavior is often facili- 
tated by the use of an appropriate mathematical model 
that enables the process to be summarized in terms of one 
or more parameters such as the dissolution rate constant. 
Since most dissolution tests are performed under nonsink 
conditions, the kinetics under such conditions are of in- 
terest. Various nonsink dissolution equations for mul- 
tiparticulate systems have been derived (lkl), but they are 
based on monodisperse systems which are rarely met in 
practice (5). 

A proper characterization of dissolution behavior must 
account for the particle-size distribution. This paper 
provides a general and rigorous description of dissolution 
under nonsink conditions on the basis of a single-particle 
dissolution model and the initial particle distribution. 
Log-normal powders are considered as a specific example. 
The equation presented describes a large class of mul- 
tiparticulate dissolution models for various values of the 
dispersion parameter and the dissolution capacity coeffi- 
cient. 

THEORY 

A previous publication (6) showed how the dissolution kinetics of a 
multiparticulate system can be rigorously described theoretically when 
the single-particle dissolution equation is known together with the initial 
particle-size distribution. Although equations for the general case (Eqs. 
12 and 13 in Ref. 6) were derived assuming sink conditions, they can also 
be applied to nonsink dissolution. 

In the current context, sink condition is defined as interparticle in- 
dependent dissolution'. This condition may be closely approximated in 
a noncumulating, open, flow-through system (7). A nonsink condition 
is defined as the condition in a solute-cumulating, closed system, where 
the particles are exposed to the same bulk concentration of solute. Dis- 
solution according to the latter definition implies agitation that is intense 
enough to give a homogeneous bulk solute concentration and to suspend 
the dissolving particles freely in the vehicle. 

The only difference between the mathematical description of the two 
systems is that, for nonsink conditions, dissolution is influenced by the 
bulk concentration of solute; therefore, the single-particle dissolution 
equation contains an additional time-dependent variable. Since this 
variable is a function of the total dissolution behavior of the system, 
mathematical analysis leads to an integral equation describing mul- 
tiparticulate nonsink dissolution kinetics. 

These principles can be illustrated on the hasis of the well-known 
Noyes-Whitney kinetics (8) for log-normal powders and spherical par- 
ticles without loss of generality. The choice of a log-normal distribution 
to approximate the initial particle distribution appears appropriate 
considering previous investigations (7,9,10). 

Single-Particle Dissolution Equation-Consider a single spherical 
particle, in a polydisperse system, dissolving under nonsink conditions 
according to the Noyes-Whitney model: 

dwldt = -kis(ci - C )  = - k 2 ~ * / ~ [ c ~ . -  (Wo - W)/V] (Eq. 1) 

where w is the weight of the particle, s is its surface area, and c, is the 
interfacial solute concentration which, in most cases, is close to the sol- 
ubility concentration, c,. Let it be assumed that k l  and kz = 4 ~ ( 4 / 3  
T P ) - ~ / ~ ~ ~  ( p  = density) are constants not dependent on the particle di- 
ameter. Such an assumption is reasonable, since it leads to the well-es- 
tablished cube root model (1) under sink conditions (c = 0). If the sin- 
gle-particle dissolution kinetics are different from the Noyes-Whitney 
kinetics (11) or if k (Eq. 1) is not constant, then the multiparticulate ki- 
netics can still be treated similarly to the cases considered below. The 
bulk solute concentration, c (Eq. l ) ,  is, according to the definition of 
nonsink conditions, equal to the ratio of the amount of powder dissolved, 
( WO - W ) ,  to the vehicle volume, V. 

It is useful to introduce the dissolution capacity coefficient defined 
by: 

(Eq. 2) (Y = [(csV - W0)/W0Jl/3 = [(c,V - Wo)/Wo]1/3 

Equation 1 then integrates to yield: 

For comparison with earlier derivations (6, 12), it is convenient also to 

This definition is different from the usual definition, which defines a sink 
condition as a condition where the solute bulk concentration does not increase 
bevond a small fraction (10-1536) of the solubility concentration. 
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present the single-particle dissolution equation derived for sink condi- 
tions (c  = 0, Eq.1): 

w = ( WO1I3 - k t ) 3  (Eq. 4) 

where: 

k = 3k2CS (Eq. 5) 

According to Eqs. 2-5, Eq. 3 can be written in the following form: 

w = ( Wo1/3 - A ) 3  (Eq. 6) 

where: 

(Eq. 7) 

Multiparticulate Dissolution Equation-If log-normal powders are 
considered, the initial particle distribution is approximated by Eq. 15 
from Ref. 6, which together with the single-particle dissolution model, 
Eq. 6, completely defines the multiparticulate dissolution according to 
Eq. 13 from Ref. 6. Equation 4 was used to derive the expression (Eq. 18 
in Ref. 6 )  for dissolution of truncated log-normal powders under sink 
conditions. This equation was later presented in a more compact form 
(Eq. 15 in Ref. 12), which can be written using the notation defined pre- 
viouslv (13): 

F(T2 - n u )  - F(T1-  n u )  
F G  - 30) - F(-i - 30) 

X exp[(n2 - 9)u2/2] (Eq. 8) 

where: 

TI = max (In K*t,  -iu)/u (Eq. 9) 

models for both mono- and polydisperse systems and nonsink and sink 
conditions (Table I). A monodisperse powder is described by letting u 
= 0; the sink condition is described by letting a = OJ. For closed systems 
(V = constant), a always is finite, so a sink condition can only be ap- 
proached when a + m. Although N is not defined by Eq. 2 for open sys- 
tems operating under sink conditions, it is meaningful and mathemati- 
cally correct to define the dissolution capacity coefficient to be infinite 
(a  = m )  for such systems. For example, according to Eq. 16, G - K*t for 
a - m ;  i.e., for c, V >> WO, Eqs. 13 and 17 approach the equations valid 
for sink conditions as expected. A monodisperse system is described by 
letting u - 0, which leads to: 

$ = io (4) ( - G ) ( 3 - n )  = (1 - G ) R  (Eq. 18) 

or: 

f = 1 - G  (Eq. 19) 

where f = ( W/W0)1/3 is introduced for convenience. Differentiation and 
rearrangement of Eq. 19 give: 

(Eq. 20) 

which, for a # 0, integrates to: 

@ ( f )  = @(1) - K*t max (-a,  0 )  5 f 5 1 (Eq. 21) 

where: 

For a = 0, Eq. 20 integrates to: 

Tz = max (In K*t,  j u ) / u  Furthermore, i t  can be seen (Eq. 19) that if a monodisperse system ( n  
= 0) is exposed to a large excess of solvent so that c,V >> Wo ( a  - m), the 
dissolution kinetics approach the Hixson-Crowell cube root law: 

(Eq’ lo) 

( E ~ .  11) F ( x )  = 7 1 .  f exp (-x2/2) dx 
V 2 K J - m  - 

The use of the max relationship (Eqs. 9 and 10) in this expression is re- 
lated to the fact that a rigorous definition of the single-particle dissolution 
equation is not given by Eq. 4 but by: 

w = [max ( ~ 1 0 ~ ’ ~  - k t ,  0)13 (Eq. 12) 

since it is required that w - 0 for t - a, which is not the case in Eq. 4. 
The operator P introduced earlier (6) automatically accounts for this lack 
of generality. The “switch” in 7’1 (Eq. 9) occurs a t  the so-called critical 
time (14-17) when the smallest particles start disappearing. The switch 
in TP denotes the completion of dissolution. At that time and thereafter, 
7’1 = 7’2 [= In ( K * t ) / u ] ,  so WIWo = 0 as expected. 

I t  is apparent from the the derivation of Eq. 8 (6, 13) that it can be 
readily extended to nonsink conditions. The only change in the derivation 
is that the single-particle dissolution equation (Eq. 6) is somewhat dif- 
ferent from Eq. 4. However, this difference can be accounted for simply 
by substituting A for k t  throughout. The following nonsink dissolution 
equation for log-normal powders results: 

F ( T 2  - n u )  - F(T1- n u )  
FG - 30) - F(-i - 3a) 

X exp [(n2 - 9)u2/2] (Eq. 13) 

where: 

TI = max (In C, -ia)/a 

T2 = max (In G, j u ) / u  

(Eq. 14) 

(Eq. 15) 

If the truncation parameters i and j are more than 3, then the particle 
distribution can be just as well approximated by an “ideal” distribution 
(i = j = m ) ,  which leads to (13): 

X exp [ ( n 2  - 9)uz/2] (Eq. 17) 

Equation 13 describes a general class of multiparticulate dissolution 

f = (W/W0)1/3 = 1 - K*t 

RESULTS AND DISCUSSION 

(Eq. 24) 

Effective Particle Distribution-The description of the kinetics 
of polydisperse systems presented is based on a log-normal, spherical 
approximation to the initial particle distribution, the simplest approxi- 
mation in most cases (7, 9, 10). Even if particle-size analysis reveals a 
significant deviation from log-normality and the particle shapes are 
considerably different from spherical, the effective size distribution may 
still be close to log-normal with respect to dissolution behavior. The  ef- 
fectiue particle distribution is defined as the distribution of  a hypo- 
thetical system of spherical particles where each individual spherical 
particle best approximates the real particle according to  the single- 
particle dissolution equation expressed on a w/wo versus time basis. 

Most particle-size distributions are characterized by a pronounced 
skewness to the right (5,9). The dispersion parameter, u, takes into ac- 
count not only how broad a distribution is but also such skewness. This 
single parameter, therefore, appears to be the simplest, general measure 
of the distribution effect. The value of K* and u in characterizing disso- 
lution behavior was discussed previously (13). The equations summarized 
in Table I have considerable practical value, since they enable dissolution 
behavior to be characterized in terms of these parameters. Evaluation 
can be made under sink as well as nonsink conditions, thus making the 
approach generally applicable and feasible using almost any dissolution 
apparatus. 

Numerical Treatment-The experimental determination of K’ and 
u under sink conditions was described previously (13). A method for si- 
multaneous determination of u and K* from nonsink dissolution data 
for polydisperse systems, employing Eq. 13 or 17, is described in the 
Appendix. 

Effect of Dispersion Parameter-Theoretical dissolution profiles 
were calculated according to Eq. 17, with a3 = 5, using the numerical 
approach in the Appendix,  to evaluate the effect of the dispersion pa- 
rameter u (Fig. l). A cube root representation is used for a better com- 
parison with the dissolution of monodisperse systems (a = 0) dissolving 
under sink conditions (Eq. 24). Only a slight deviation from linearity is 
observed due to  the nonsink conditions (a3 = 5)  for the monodisperse 
systems (second curve from left). An increasing deviat.ion from linearity 
is observed for increasing values of the dispersion parameter as expected. 
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Table I-A General Class of Multiparticulate Dissolution Models Based on Eq. 13 

Dissolution Dispersion Truncation 
Capacity Parameter, Parametersb, Particle 

Coefficient", a U i and j Distribution Condition Dissolution Model 

- 1 < n < m  u > o  and; < m Truncated log-normal Nonsink Eq. 13 
- l < a < m  0 > 0  Z = J =  m Ideal log-normal Nonsink Eq. 17 
- 1 < c r < m  u = o  i = ; = o  Monodisperse Nonsink Eq. 21 (a # O ) ,  Eq. 23 (a = 0) 
a = m  O > O  i a n f l j < m  Truncated log-normal Sink Eq. 8 
a = m  O > O  I = ] = "  Ideal log-normal Sink Eq. 17 with G = K*t 
( y = m  u = o  i = j = O  Monodisperse . Sink Eq. 24 

When,n < 0, dissolution will be incomplete: min (W/Wo) = -a3 [in general, min (WIW,) = max (-a3, O ) ] .  The cases for semiideal distributions; i .e. ,  i = m, J < rn 
or i < m, J = m can similarly be described (13). 

The numerical solution of Eq. 17 closely approached the numerical so- 
lution of Eq. 21 as u - 0, thus indicating satisfactory accuracy in the 
numerical technique used2. 

Deviations from Linearity in  4, (t) Plot for  Polydisperse Sys- 
tems-For monodisperse systems, Eq. 21 predicts a linear relationship 
between @ ( f )  and t ,  enabling K* to be determined by linear regression. 
However, a deviation from linearity is expected in practice, since most 
systems are not monodisperse. The extent to which such deviations de- 
pend on u is of interest. The exact theoretical curves in Fig. 1 for the 
nonsink dissolution of polydisperse systems were plotted according to 
Eq. 21, using K*t instead o f t  as the independent variable for generality 
(Fig. 2):i. 

The deviation from linearity is not greatly affected by u in the initial 
dissolution phases, but it becomes more pronounced toward the end for 
u values greater than about 0.2. This result indicates the need to follow 
dissolution to completion or near completion to get a reliable estimate 
of the degree of dispersion of a multiparticulate system. 

Dissolution of Dosage Forms-The given equations are derived for 
multiparticulate systems of pure compounds. Particle systems produced 
by fast disintegrating tablets and capsules are multiparticulate, although 
perhaps not as well defied as those considered. The equations presented 
should be valuable to characterize the dissolution behavior of such dosage 
forms. 

I f  the disintegration time, 7, is significant compared to the dissolution 

l . O i  

Ch 
$1 .o 
10.8 

0.1 

" 
0 1 2 3 4 

K *t 

Figure 1-Effect of the dispersion parameter, u, on the intrinsic dis- 
solution profile of log-normal powders dissolving (Eq. 17) under nonsink 
conditions with a dissolution capacity coefficient a3 = 5. T h e  straight 
line at the far left (Eq. 24), representing a monodisperse system (u = 
0 )  dissolving under sink conditions (a  = a), is included for comparison. 
The  other five curves represent, from left to right, u = 0, 0.1,0.2,0.3, and 
0.4, respectively. 

time, the variable t in the equations presented should be redefined as: 

t = max ( t  - 7 , O )  (Eq. 25) 

for a better description of the kinetics. In such cases, 7 may be treated 
as an additional parameter that can be determined from the dissolution 
data. 

Experimental analysis o f  dissolution kinetics of polydisperse systems 
under nonsink conditions considering those models is in progress. 

APPENDIX 

Equations 13 and 17 appear somewhat complex to evaluate because 
the dependent variable, W/Wo, occurs in implicit, nonlinear, integral 
form. A general numerical approach for nonlinear integral equations (18) 
is too complex for practical purposes. Fortunately, however, the problem 
can be transformed into an initial value problem, which can be solved 
readily using established numerical techniques (19) as follows. Let  

t w  .=A R d t  (Eq. A l )  

y' = w/ wo (Eq. A2) 

Substitution of these equations into Eqs. 13 and 17 yields the initial value 
problem: 

Y' = h ( t ,  y )  ~ ( 0 )  = 0 (Eq. A3) 

The function h is simply the right-hand side of Eq. 13 (or 17), where 
JbW/Wo dt  has been substituted by y .  The y ( t )  values obtained using 
a suitable integration algorithm will, when substituted into Eq. A3, give 
the required explicit functional relationship between the variables W/Wo 
and t :  

W / W o = y ' ( t )  = h [ t , y ( t ) ]  (Eq. A4) 

Once this relationship is defined, the parameters u and K* (as well as i, 

-0.4 I 
0 1 2 

A fourth-order Rhunga-Kutta method was used to solve the initial value 
problem. 

plotted in Fig. 2 until 99% has dissolved to disregard approximation errors origi- 
nating from the infinite tails of the untruncated distribution. 

Figure 2-Effect of the dispersion parameter, ,,, on linearity when 

Fig. 1)  are plotted according to J%. 21, which is based on monodisperse 
systems. From left to right, u = 0, 0.1, 0.2,0.3, and 0.4, respectiuely. 

3 Because Eq, 17 is based on an ideal distribution, the dissolution data are only nonsink (a3 = 5, dissozution data from powders (Eq. l7 and 
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j ,  (Y, and T) can then be determined directly from nonsink dissolution data 
(W/Wo versus t )  using a suitable nonlinear regression program. 
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Bioavailability of Sulfadiazine in Rabbits 
Using Tablets Prepared by 
Direct Compression and Fluidized-Bed Granulation 

W. A. RITSCHEL” and W. ERN1 

Abstract tl Experimental sulfadiazine tablets prepared by direct com- 
pression, using a commercially available direct compression tablet mass, 
were compared with experimental sulfadiazine tablets prepared by 
fluidized-bed granulation and commercially available sulfadiazine tablets 
USP. The values for friability and the time required to release 10 and 50% 
of the direct compression tablets were between those of the fluidized-hed 
tablets and the commercial product. With the commercial tablet as a 
standard, the extent of bioavailability was determined in rabbits; it was 
slightly higher for both the direct compression and fluidized-bed tablets. 
A statistically significant difference was found between the direct com- 
pression tablets and the standard with respect to the extent of bioavail- 
ability and the time of the peak. 

Keyphrases 0 Sulfadiazine-bioavailability of tablets prepared by 
direct compression and fluidized-bed techniques compared to commercial 
product, rabbits 0 Bioavailability-sulfadiazine, tablets prepared by 
direct compression and fluidized-bed techniques compared to commercial 
product, rabbits tl Tablets-sulfadiazine, prepared by direct compression 
and fluidized-bed techniques, bioavailability compared to commercial 
product, rabbits Antibacterials-sulfadiazine, bioavailability of tablets 
prepared by direct compression and fluidized-bed techniques compared 
to commercial product, rabbits 

Sulfadiazine tablets are considered to present actual or 
potential bioequivalence problems (1). The use of a direct 
compression technique for their preparation seemed of 
particular interest, since numerous formulation factors 
influencing the i n  vitro dissolution rate and bioavailability 
previously were studied with sulfadiazine as a model 

substance. The compression pressure and binder concen- 
tration of acacia affected the dissolution rate of sulfadi- 
azine tablets (2)- The effects of disintegration agents, 
binders, fillers, and lubricants on the in uitro disintegration 
time and dissolution rate and the in uiuo availability of 
various formulations were investigated (3). The highest 
blood levels in rabbits were found with formulations that 
did not contain magnesium stearate as the lubricant and 
lactose as the filler. 

The influence of different lubricants in various con- 
centrations on dissolution rate and bioavailability was 
studied (4). The highest bioavailability was obtained when 
the lubricant was kept a t  the minimum concentration with 
improved flow properties; a lubricant concentration re- 
sulting in optimum flow properties resulted in decreased 
bioavailability. Increasing amounts of starch paste, car- 
boxymethylcellulose sodium, gelatin, or polyethylene 
glycol decreased in vitro drug release, whereas increasing 
amounts of povidone increased sulfadiazine release (5). 
Increasing amounts of carboxymethylcellulose sodium 
resulted in decreased bioavailability in rabbits (5 ) .  

The influence of the granulation method on the in uitro 
drug release and bioavailability of sulfadiazine tablets in 
rabbits was studied (6,7). In uitro drug release decreased 
in the following order of granulation method fluidized bed, 
nodulation, shaking, sieve pressure, and hole disk. I n  uiuo 
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